Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

> Carlos A. R. Sa de Melo Georgia Institute of Technology

QMath13

Mathematical Results in Quantum Physics Atlanta: October 10th, 2016

Main References for Talk

Ultra-cold fermions in the flatland: evolution from BCS to Bose superfluidity in two-dimensions with spin-orbit and Zeeman fields

Li Han and C. A. R. Sá de Melo School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA (Dated: June 22, 2012)

arXiv:1206.4984v1 (UNPUBLISHED)

PRL 113, 165304 (2014)

PHYSICAL REVIEW LETTERS

week ending 17 OCTOBER 2014

Effects of Spin-Orbit Coupling on the Berezinskii-Kosterlitz-Thouless Transition and the Vortex-Antivortex Structure in Two-Dimensional Fermi Gases

Jeroen P. A. Devreese,^{1,2} Jacques Tempere,^{2,3} and Carlos A. R. Sá de Melo¹ ¹School of Physics, Georgia Institute of Technology, Atlanta 30332, USA ²TQC, Universiteit Antwerpen, B-2610 Antwerpen, Belgium ³Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138, USA (Received 23 March 2014; published 17 October 2014)

Acknowledgements

<image/> <section-header><section-header></section-header></section-header>	<image/> <section-header></section-header>
Jacques Tempere	3

Outline

1) Introduction to 2D Fermi gases.

2) Creation of artificial spin-orbit coupling (SOC).

3) Quantum phases and topological quantum phase transitions of 2D Fermi gases with SOC.

4) The BKT transition and the vortex-antivortex structure.

5) Conclusions

Conclusions in words

- Ultra-cold fermions in the presence of spin-orbit and Zeeman fields are special systems that allow for the study of exciting new phases of matter, such as topological superfluids, with a high degree of accuracy.
- Topological quantum phase transitions emerge as function of Zeeman fields and binding energy for fixed spin-orbit coupling.

Conclusions in words

- The critical temperature of the BKT transition as a function of pair binding energy is affected by the presence of spin-orbit effects and Zeeman fields. While the Zeeman field tends to reduce the critical temperature, SOC tends to stabilize it by introducing a triplet component in the superfluid order parameter.
- In the presence of a generic SOC the sound velocity in the superfluid state is anisotropic and becomes a sensitive probe of the proximity to topological quantum phase transitions. The vortex and antivortex shapes are also affected by the SOC and acquire a corresponding anisotropy.

Conclusions in Pictures

BKT transition and vortex-antivortex structure

Outline

1) Introduction to 2D Fermi gases.

2) Creation of artificial spin-orbit coupling (SOC).

3) Quantum phases and topological quantum phase transitions of 2D Fermi gases with SOC.

4) The BKT transition and the vortex-antivortex structure.

5) Conclusions

Condensed Matter meets Atomic Physics

In optical lattices many types of atoms can be loaded like bosonic, Sodium-23, Potassium-39, Rubidium-87, or Cesium-133; and fermionic Lithium-6, Potassium-40, Strontium-87, etc...

In real crystals electrons or holes (absence of electrons) may be responsible for many "electronic" phases of condensed matter physics, such as metallic, insulating, superconducting, ferromagnetic, antiferromagnetic, etc...

How atoms are trapped?

- Atom-laser interaction
- Induced dipole moment.
- Trapping potential

$$V(\mathbf{r},t) = -\mathbf{d} \bullet \mathbf{E}(\mathbf{r},t)$$

$$\mathbf{d} = -\alpha(\omega)\mathbf{E}(\mathbf{r},t)$$

$$V(\mathbf{r},t) = -\alpha(\omega)[\mathbf{E}(\mathbf{r},t)]^2$$

Atoms in optical lattices

$$V(\mathbf{r}) = -\alpha(\omega) < [\mathbf{E}(\mathbf{r},t)]^2 >$$
$$V(\mathbf{r}) = -\frac{1}{2}\alpha(\omega)[\mathbf{E}(\mathbf{r})]^2$$

How optical lattices are created?

Single plane excitations

Vortex-antivortex pairs

BKT transition: Physics of 2D XY model

BCS-Bose Superfluidity in 2D

2D Fermi gases with increasing attractive interactions, but no SOC.

Vortex-Antivortex Lattice in Ultracold Fermionic Gases

S. S. Botelho and C. A. R. Sá de Melo

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA (Received 14 September 2005; published 3 February 2006)

PRL 96, 040404 (2006)

PRL 105, 030404 (2010)

PHYSICAL REVIEW LETTERS

week ending 16 JULY 2010

Ş

Observation of a Two-Dimensional Fermi Gas of Atoms

Kirill Martiyanov, Vasiliy Makhalov, and Andrey Turlapov*

Institute of Applied Physics, Russian Academy of Sciences, ul. Ulyanova 46, Nizhniy Novgorod, 603000, Russia (Received 20 May 2010; published 15 July 2010)

Outline

1) Introduction to 2D Fermi gases.

2) Creation of artificial spin-orbit coupling (SOC).

3) Quantum phases and topological quantum phase transitions of 2D Fermi gases with SOC.

4) The BKT Transition and the vortex-antivortex structure.

5) Conclusions

Raman process and spin-orbit coupling

SU(2) rotation to new spin basis: $\sigma_x \rightarrow \sigma_z; \ \sigma_z \rightarrow \sigma_y; \ \sigma_y \rightarrow \sigma_x$

Geometry

3 MARCH 2011 | VOL 471 | NATURE | 83

LETTER

doi:10.1038/nature09887

Spin-orbit-coupled Bose-Einstein condensates

Y.-J. Lin¹, K. Jiménez-García^{1,2} & I. B. Spielman¹

Hamiltonian with spin-orbit

Hamiltonian with spin - orbit $H = \sum_{k,s} \varepsilon(\mathbf{k}) c_{ks}^{+} c_{ks} - \sum_{k,s} h_{s's}(\mathbf{k}) c_{ks'}^{+} c_{ks}$

Parallel and perpendicular fields

$$h_{\parallel}(\mathbf{k}) = h_{z}(\mathbf{k})$$
$$h_{\perp}(\mathbf{k}) = h_{x}(\mathbf{k}) - ih_{y}(\mathbf{k})$$

$$\mathbf{H}_{0}(\mathbf{k}) = \begin{pmatrix} \boldsymbol{\varepsilon}(\mathbf{k}) - h_{\parallel}(\mathbf{k}) & -h_{\perp}(\mathbf{k}) \\ -h_{\perp}^{*}(\mathbf{k}) & \boldsymbol{\varepsilon}(\mathbf{k}) + h_{\parallel}(\mathbf{k}) \end{pmatrix}$$

Hamiltonian in terms of k-dependent magnetic fields

Hamiltonian Matrix $\mathbf{H}_{0}(\mathbf{k}) = \boldsymbol{\varepsilon}(\mathbf{k})\mathbf{1} - h_{x}(\mathbf{k})\boldsymbol{\sigma}_{x} - h_{y}(\mathbf{k})\boldsymbol{\sigma}_{y} - h_{z}(\mathbf{k})\boldsymbol{\sigma}_{z}$

Momentum Space Two - Level System in a momentum dependent magnetic field $\mathbf{h}(\mathbf{k}) = \left[h_x(\mathbf{k}), h_y(\mathbf{k}), h_z(\mathbf{k})\right]$

Eigenvalues

$$\mathcal{E}_{\uparrow}(\mathbf{k}) = \mathcal{E}(\mathbf{k}) - \left| h_{\text{eff}}(\mathbf{k}) \right|$$
$$\mathcal{E}_{\downarrow}(\mathbf{k}) = \mathcal{E}(\mathbf{k}) + \left| h_{\text{eff}}(\mathbf{k}) \right|$$
$$\left| h_{\text{eff}}(\mathbf{k}) \right| = \sqrt{\left| h_x(\mathbf{k}) \right|^2 + \left| h_y(\mathbf{k}) \right|^2 + \left| h_z(\mathbf{k}) \right|^2}$$

Rashba Spin-Orbit Coupling

$$\mathbf{H}_{R}(\mathbf{k}) = v_{R} \begin{pmatrix} 0 & k_{y} + ik_{x} \\ k_{y} - ik_{x} & 0 \end{pmatrix}$$

Rashba

25

P_x

Equal-Rashba-Dresselhaus (ERD) Spin-Orbit Coupling

$$\mathbf{H}_{R}(\mathbf{k}) = v_{R} \begin{pmatrix} 0 & k_{y} + ik_{x} \\ k_{y} - ik_{x} & 0 \end{pmatrix} \mathbf{H}_{D}(\mathbf{k}) = -v_{D} \begin{pmatrix} 0 & k_{y} - ik_{x} \\ k_{y} + ik_{x} & 0 \end{pmatrix}$$
$$\mathbf{H}_{ERD}(\mathbf{k}) = v \begin{pmatrix} 0 & ik_{x} \\ -ik_{x} & 0 \end{pmatrix}$$

Energy Dispersions in the ERD case

Energy Dispersions and Fermi Surfaces

Momentum Distribution (Parity)

Outline

1) Introduction to 2D Fermi gases.

2) Creation of artificial spin-orbit coupling (SOC).

3) Quantum phases and topological quantum phase transitions of 2D Fermi gases with SOC.

4) The BKT Transition and the vortex-antivortex structure.

5) Conclusions

Bring Interactions Back (real space)

$$\mathcal{H}(\mathbf{r}) = \mathcal{H}_0(\mathbf{r}) + \mathcal{H}_I(\mathbf{r})$$

$$\mathcal{H}_0(\mathbf{r}) = \sum_{\alpha\beta} \psi_{\alpha}^{\dagger}(\mathbf{r}) \left[\hat{K}_{\alpha} \delta_{\alpha\beta} - h_i(\mathbf{r}) \sigma_{i,\alpha\beta} \right] \psi_{\beta}(\mathbf{r})$$

Kinetic Energy

Spin-orbit and Zeeman

$$\mathcal{H}_I(\mathbf{r}) = -g\psi^{\dagger}_{\uparrow}(\mathbf{r})\psi^{\dagger}_{\downarrow}(\mathbf{r})\psi_{\downarrow}(\mathbf{r})\psi_{\downarrow}(\mathbf{r})$$

Contact Interaction

Bring Interactions Back (momentum space)

$$\mathcal{H}_I = -g\sum_{\mathbf{q}} b^{\dagger}(\mathbf{q})b(\mathbf{q})$$

$$b^{\dagger}(\mathbf{q}) = \sum_{\mathbf{k}} \psi^{\dagger}_{\uparrow}(\mathbf{k} + \mathbf{q}/2)\psi^{\dagger}_{\downarrow}(-\mathbf{k} + \mathbf{q}/2)$$

$$\Delta_0 = -g \langle b(\mathbf{q}=0) \rangle$$
 and $\Delta_0^* = -g \langle b^+(\mathbf{q}=0) \rangle$

Bring interactions back: Hamiltonian in initial spin basis

Bring interactions back: Hamiltonian in the generalized helicity basis

Order Parameter: Singlet & Triplet

$$\Delta_{S}(\mathbf{k}) = \Delta_{0}h_{\parallel}(\mathbf{k})/|\mathbf{h}_{eff}(\mathbf{k})|$$

$$\Delta_{T}(\mathbf{k}) = \Delta_{0}|h_{\perp}(\mathbf{k})|/|\mathbf{h}_{eff}(\mathbf{k})|$$

$$|\Delta_{T}(\mathbf{k})|^{2} + |\Delta_{S}(\mathbf{k})|^{2} = |\Delta_{0}|^{2}$$

$$h_{\perp}(\mathbf{k}) = vk_{x} \quad h_{z}(\mathbf{k}) = h_{z}$$

$$\mathbf{h}_{eff}(\mathbf{k}) = (0, vk_{x}, h_{z}) \quad h_{eff}(\mathbf{k}) = \sqrt{|vk_{x}|^{2} + h_{z}^{2}}$$

Excitation Spectrum

$$E_1(\mathbf{k}) = \sqrt{\left[\left(\frac{\xi_{\uparrow\uparrow} - \xi_{\downarrow\downarrow}}{2}\right) - \sqrt{\left(\frac{\xi_{\uparrow\uparrow} + \xi_{\downarrow\downarrow}}{2}\right)^2 + |\Delta_S(\mathbf{k})|^2}\right]^2 + |\Delta_T(\mathbf{k})|^2},$$

$$E_2(\mathbf{k}) = \sqrt{\left[\left(\frac{\xi_{\uparrow\uparrow} - \xi_{\downarrow\downarrow}}{2}\right) + \sqrt{\left(\frac{\xi_{\uparrow\uparrow} + \xi_{\downarrow\downarrow}}{2}\right)^2 + |\Delta_S(\mathbf{k})|^2}\right]^2 + |\Delta_T(\mathbf{k})|^2},$$

Can be zero

$$E_3(\mathbf{k}) = -E_2(\mathbf{k})$$

$$\xi_{\uparrow}(\mathbf{k}) = K_{+}(\mathbf{k}) - |\mathbf{h}_{\text{eff}}(\mathbf{k})|$$

$$\xi_{\Downarrow}(\mathbf{k}) = K_{+}(\mathbf{k}) + |\mathbf{h}_{\text{eff}}(\mathbf{k})|$$

$$E_4(\mathbf{k}) = -E_1(\mathbf{k})$$

Excitation Spectrum

Making singlet and triplet sectors explicit

$$E_2(\mathbf{k}) \leftrightarrow E_-(\mathbf{k})$$
 $E_1(\mathbf{k}) \leftrightarrow E_+(\mathbf{k})$

$$E_{p\pm}(\mathbf{k}) = \sqrt{\left(E_S(\mathbf{k}) \pm |\mathbf{h}_{\text{eff}}(\mathbf{k})|\right)^2 + |\Delta_T(\mathbf{k})|^2}$$

$$E_S(\mathbf{k}) = \sqrt{|K(\mathbf{k})|^2 + |\widetilde{\Delta}_S(\mathbf{k})|^2}$$
 singlet sector

Excitation Spectrum (ERD)

38

Lifshitz transition

Change in topology

Topological invariant (charge) in 2D

$$\hat{\mathbf{m}}(\mathbf{k}) = (m_x, m_y)$$

$$N_w = (2\pi)^{-1} \oint d\ell \,\hat{\mathbf{z}} \cdot \hat{\mathbf{m}} \times d\hat{\mathbf{m}}/d\ell$$

$$m_x(\mathbf{k}) = [E_S(\mathbf{k}) - |\mathbf{h}_{\text{eff}}(\mathbf{k})|]/E_{p-}(\mathbf{k})$$

$$m_y(\mathbf{k}) = \Delta_T(\mathbf{k})/E_{p-}(\mathbf{k})$$

Vortices and Anti-vortices of m(k)

For T = 0 phase diagram need chemical potential and order parameter

$$\Omega_0 = V \frac{|\Delta_0|^2}{g} - \frac{T}{2} \sum_{\mathbf{k},j} \ln\{1 + \exp\left[-E_j(\mathbf{k})/T\right]\} + \sum_{\mathbf{k}} \bar{K}_+,$$

$$\bar{K}_+ = \left[\widetilde{K}_{\uparrow}(-\mathbf{k}) + \widetilde{K}_{\downarrow}(-\mathbf{k}) \right] / 2$$

 $\frac{\partial \Omega_0}{\partial \Delta_0} = 0$ Order
Parameter
Equation

$$N_{+} = -\frac{\partial \Omega_{0}}{\partial \mu_{+}} = 0$$

Number Equation

T = 0 Phase Diagram in 2D

Momentum distributions in 2D

FIG. 3: (color online) The momentum distributions $n_s(k_x, k_y)$ for ERD SOC $v/v_F = 0.8$ and $E_b/\epsilon_F = 0.1$ at T = 0, where $s = \uparrow (\downarrow)$ for upper (lower) panels. (a)(d) i-US-0 phase with $h_z/\epsilon_F = 0.2$; (b)(e) US-2 phase with $h_z/\epsilon_F = 0.4$; (c)(f) US-1 phase with $h_z/\epsilon_F = 1.0$. The color coding varies continuously from purple $(n_s = 0)$ to red $(n_s = 1)$.

Thermodynamic signatures of topological transitions

T = 0 Thermodynamic Properties in 2D

Outline

1) Introduction to 2D Fermi gases.

2) Creation of artificial spin-orbit coupling (SOC).

3) Quantum phases and topological quantum phase transitions of 2D Fermi gases with SOC.

4) The BKT transition and the vortex-antivortex structure.

5) Conclusions

Hamiltonian in Real Space

$$\mathcal{H}(\mathbf{r}) = \mathcal{H}_0(\mathbf{r}) + \mathcal{H}_I(\mathbf{r})$$

$$\mathcal{H}_0(\mathbf{r}) = \sum_{\alpha\beta} \psi_{\alpha}^{\dagger}(\mathbf{r}) \left[\hat{K}_{\alpha} \delta_{\alpha\beta} - h_i(\mathbf{r}) \sigma_{i,\alpha\beta} \right] \psi_{\beta}(\mathbf{r})$$

Kinetic Energy

Spin-orbit and Zeeman

$$\mathcal{H}_I(\mathbf{r}) = -g\psi^{\dagger}_{\uparrow}(\mathbf{r})\psi^{\dagger}_{\downarrow}(\mathbf{r})\psi_{\downarrow}(\mathbf{r})\psi_{\downarrow}(\mathbf{r})$$

Contact Interaction

Effective Action at finite T

$$\psi_{r,s} \to \psi_{r,s} e^{i\theta_r/2}$$

$$\Delta_r = |\Delta_r| e^{i\theta_r}$$

$$S = -\frac{1}{2} \operatorname{Tr} \left\{ \ln \left[\beta \begin{pmatrix} \mathbb{A}_{+} & \mathbb{D}_{+} \\ \mathbb{D}_{-} & \mathbb{A}_{-}^{*} \end{pmatrix} \right] \right\} - \frac{\beta L^{2} |\Delta|^{2}}{g} \qquad (2)$$
$$+ \frac{\beta}{2} \sum_{k,s} (-i\omega_{n} + \mathbf{k}^{2} - \mu_{s}) + \frac{1}{8L^{2}} \int dr \sum_{k} [\nabla_{\mathbf{r}}(\theta_{r})]^{2}.$$

Effective Action at finite T

$$S = S_{sp} + S_{fl}$$

$$S_{sp} = -\frac{1}{2} \operatorname{Tr} \{ \ln[\beta \mathbb{M}_{k}(0,0)] \} + \frac{\beta}{2} \sum_{k,s} (-i\omega_{n} + \mathbf{k}^{2} - \mu_{s}) - \frac{\beta L^{2} |\Delta|^{2}}{g} \}$$

$$S_{fl} = \frac{1}{2} \int dr \left(\mathcal{A} \left(\frac{\partial \theta_r}{\partial \tau} \right)^2 + \sum_{\nu = \{x, y\}} \rho_{\nu\nu} \left(\frac{\partial \theta_r}{\partial \nu} \right)^2 \right)$$

BKT Transition Temperature

Beyond the Clogston Limit

Full Finite Phase Diagram

Anisotropic speed of sound

$$\widetilde{\mathcal{A}}\varpi_{\cdot}^{2} - \begin{pmatrix} q_{x} & q_{y} \end{pmatrix} \begin{pmatrix} \rho_{xx} & \rho_{xy} \\ \rho_{xy} & \rho_{yy} \end{pmatrix} \begin{pmatrix} q_{x} \\ q_{y} \end{pmatrix} = 0$$

Vortex-Antivortex Structure

ERD

RASHBA

Outline

1) Introduction to 2D Fermi gases.

2) Creation of artificial spin-orbit coupling (SOC).

3) Quantum phases and topological quantum phase transitions of 2D Fermi gases with SOC.

4) The BKT transition and the vortex-antivortex structure.

5) Conclusions

Conclusions in words

- Ultra-cold fermions in the presence of spin-orbit and Zeeman fields are special systems that allow for the study of exciting new phases of matter, such as topological superfluids, with a high degree of accuracy.
- Topological quantum phase transitions emerge as function of Zeeman fields and binding energy for fixed spin-orbit coupling.

Conclusions in words

- The critical temperature of the BKT transition as a function of pair binding energy is affected by the presence of spin-orbit effects and Zeeman fields. While the Zeeman field tends to reduce the critical temperature, SOC tends to stabilize it by introducing a triplet component in the superfluid order parameter.
- In the presence of a generic SOC the sound velocity in the superfluid state is anisotropic and becomes a sensitive probe of the proximity to topological quantum phase transitions. The vortex and antivortex shapes are also affected by the SOC and acquire a corresponding anisotropy.

Conclusions in Pictures

BKT transition and vortex-antivortex structure

