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5) Conclusions




Conclusions in words

e Ultra-cold fermions in the presence of spin-orbit
and Zeeman fields are special systems that allow
for the study of exciting new phases of matter,
such as topological superfluids, with a high
degree of accuracy.

Topological guantum phase transitions emerge as
function of Zeeman fields and binding energy for
fixed spin-orbit coupling.




Conclusions in words

 The critical temperature of the BKT transition as a function of
pair binding energy is affected by the presence of spin-orbit
effects and Zeeman fields. While the Zeeman field tends to
reduce the critical temperature, SOC tends to stabilize it by
introducing a triplet component in the superfluid order
parameter.

In the presence of a generic SOC the sound velocity in the
superfluid state is anisotropic and becomes a sensitive probe
of the proximity to topological quantum phase transitions.
The vortex and antivortex shapes are also affected by the SOC
and acquire a corresponding anisotropy.
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Condensed Matter meets
Atomic Physics

In real crystals electrons or holes
(absence of electrons) may be
responsible for many “electronic”
phases of condensed matter physics,
such as metallic, insulating,
superconducting, ferromagnetic, anti-
ferromagnetic, etc...

Neutral atoms (bosons or fermions)
a Optical lattice

Electrons of holes (fermions only)




How atoms are trapped?

* |nduced dipole
moment.

V(r,t)=-a(w)[E(r,t)]?




Atoms in optical lattices




How optical lattices are created?

Laser standing wave

Laser beam ] I ,
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Single plane excitations

Vortex-antivortex pairs

BKT transition:
Physics of 2D XY model




Critical Temperature

BCSBose Superfluidity in 2D "




2D Fermi gases with increasing
attractive interactions, but no SOC.
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Raman process and spin-orbit coupling




SU(2) rotation to new spin basis:
0,2 0,; 0,2 0,; 0,2 C,
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Spin-orbit-coupled Bose-Einstein condensates
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Hamiltonian with spin-orbit

Hamiltonian with spin- orbit

H = kZ: & (k )Cl-:scks - kZ: hs's (k )C;S'Cks




Parallel and perpendicular fields

Ho(k) =

h,(k) = h, (k)
h (k) = h(K) -ih, (k)

(e(k) —hy(k)

\ _h*m(k)

- hD (k) \
e(k) +h(K),




Hamiltonian in terms of
k-dependent magnetic fields

Hamiltonian Matrix
H,(k) =¢&k)1-h(k)s, —h (k)e, —h,(k)o,

MomentunSpacel wo - LevelSystem
INn amomentundependenmagnetidield

h(k) = [h, (k). h, (), h, (k)]




AERVEIES

& (K) =&(K) —[hq (K)

£,(K) = £(K) *+|nyy (K)

e (K] =GO + [, GO+, )]
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Equal-Rashba-Dresselhaus (ERD)
Spin-Orbit Coupling

Y momentum [kg ]

X momentum [kg, ]




Energy Dispersions in the ERD case

Simplercase £(k) = k*/(2m)
h, (k) =0 AN
hy(k):VkX

h,(k) =0
£, (k) = (k) -
g,(k) =&(k) +




Energy Dispersions and Fermi Surfaces

£, (K) =k2/(2m) £ vk,




Momentum Distribution (Parity)
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Bring Interactions Back (real space)

Kinetic Energy  Spin-orbit and Zeeman

Contact Interaction




Bring Interactions Back
(momentum space)

A, =-g(b(q=0)) and A,=-g(b’(q=0))




Bring interactions back:
Hamiltonian in initial spin basis

K, (k) = &(k) - = sh,(k)




Bring interactions back: Hamiltonian
in the generalized helicity basis




Order Parameter: Singlet & Triplet

1n.

Ar(k) = Aolhi(k)|/|[heg (k)|
Ar(k)|*+[As(k)|* = [Ao]?

hD (k) :ka hz(k) = hz

he (K) = (0,vKk,, h,) | e (K) = ‘ka‘z + hz2




Excitation Spectrum




Excitation Spectrum

Making singlet and triplet sectors explicit

E,(k)  E_(k)JE K) - E,(K)




Excitation Spectrum (ERD)
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Topological invariant (charge) in 2D




Vortices and Anti-vortices of m(k)

2D ERD=0.8 Eb=1. hz=0.020 (d—US—-0) 2D ERD=0.8 Eb=1. hz=1.500 (US—1)




For T = 0 phase diagram need chemical
potential and order parameter

0 —

O Paramete 0 Equation
0 Equation
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T =0 Phase Diagram in 2D
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Momentum distributions in 2D
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FIG. 3: (color online) The momentum distributions
ns(kz,ky) for ERD SOC v/vrp = 0.8 and Ep/er = 0.1 at
T = 0, where s =1 (] ) for upper (lower) panels. (a)(d) i-US-0
phase with h. /er = 0.2; (b)(e) US-2 phase with h. /er = 0.4;
(c)(f) US-1 phase with h./er = 1.0. The color coding varies
continuously from purple (ns = 0) to red (ns = 1).




Thermodynamic signatures of
topological transitions




T = 0 Thermodynamic Properties in 2D
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Hamiltonian in Real Space

Kinetic Energy  Spin-orbit and Zeeman

Contact Interaction




Effective Action at finite T

1 A, Dy\]\ ALAAP i
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Effective Action at finite T

Sep = —LTr{In[BMy(0,0)]}+£ ¥, ((—iwon+k2 —pus) — ZEIAL




BKT Transition Temperature
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Beyond the Clogston Limit
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Anisotropic speed of sound
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THE END




