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Conclusions in words

• Ultra-cold fermions in the presence of spin-orbit 

and Zeeman fields are special systems that allow 

for the study of exciting new phases of matter, 

such as topological superfluids, with a high 

degree of accuracy. 

• Topological quantum phase transitions emerge as 

function of Zeeman fields and binding energy for 

fixed spin-orbit coupling.
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Conclusions in words

• The critical temperature of the BKT transition as a function of 
pair binding energy is affected by the presence of spin-orbit 
effects and Zeeman fields. While the Zeeman field tends to 
reduce the critical temperature, SOC tends to stabilize it by 
introducing a triplet component in the superfluid order 
parameter.

• In the presence of a generic SOC the sound velocity in the 
superfluid state is anisotropic and becomes a sensitive probe 
of the proximity to topological quantum phase transitions. 
The vortex and antivortex shapes are also affected by the SOC 
and acquire a corresponding anisotropy.
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Conclusions in Pictures

Change in topology
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Condensed Matter meets

Atomic Physics

In real crystals electrons or holes 

(absence of electrons) may be 

responsible for many “electronic” 

phases of condensed matter physics, 

such as metallic, insulating,

superconducting, ferromagnetic, anti-

ferromagnetic, etc…

Neutral atoms (bosons or fermions)

Electrons of holes (fermions only)

In optical lattices many types of atoms 

can be loaded like bosonic, Sodium-23, 

Potassium-39, Rubidium-87, or 

Cesium-133; and fermionic Lithium-6, 

Potassium-40, Strontium-87, etc…
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How atoms are trapped?

• Atom-laser interaction

• Induced dipole 

moment.

• Trapping potential
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Atoms in optical lattices

( ) ( ) ( )
( ) ( ) ( ) 2

2

][
2

1

],[ 

rrrrrrrr

rrrrrrrr

E

E

ωα

ωα

−=

><−=

V

tV

12



How optical lattices are created?
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Single plane excitations

Vortex-antivortex pairs

BKT transition:

Physics of 2D XY model
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Critical Temperature

BCS-Bose Superfluidity in 2D

0.125

Bose Liquid

Fermi Liquid

Pairing 
Temperature
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2D Fermi gases  with increasing 

attractive interactions, but no SOC.
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Raman process and spin-orbit coupling
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SU(2) rotation to new spin basis:
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spin-orbit

detuning

Raman
coupling
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Hamiltonian with spin-orbit
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Hamiltonian in terms of 

k-dependent magnetic fields
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Eigenvalues  
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Rashba Spin-Orbit Coupling  

25



Equal-Rashba-Dresselhaus (ERD)

Spin-Orbit Coupling  
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Energy Dispersions in the ERD case
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Energy Dispersions and Fermi Surfaces
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Momentum Distribution (Parity)
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3) Quantum phases and topological quantum phase 

transitions of 2D Fermi gases with SOC.
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Bring Interactions Back (real space)

Kinetic Energy

Contact Interaction

Spin-orbit and Zeeman
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Bring Interactions Back 

(momentum space)
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Bring interactions back:

Hamiltonian in initial spin basis
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Bring interactions back: Hamiltonian 

in the generalized helicity basis
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Order Parameter: Singlet & Triplet

ERD
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Excitation Spectrum

Can be
zero

36



Excitation Spectrum

singlet sector

Making singlet and triplet sectors explicit
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Excitation Spectrum (ERD)
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Lifshitz transition  

Change in topology
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Topological invariant (charge) in 2D
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Vortices and Anti-vortices of m(k) 
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For T = 0 phase diagram need chemical 

potential and order parameter
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T = 0 Phase Diagram in 2D

43



Momentum distributions in 2D
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Thermodynamic signatures of 

topological transitions
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T = 0 Thermodynamic Properties in 2D
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Hamiltonian in Real Space

Kinetic Energy

Contact Interaction

Spin-orbit and Zeeman
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Effective Action at finite T
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Effective Action at finite T
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BKT Transition Temperature
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Beyond the Clogston Limit
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Full Finite Phase Diagram
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Anisotropic speed of sound
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Vortex-Antivortex Structure
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Conclusions in words

• Ultra-cold fermions in the presence of spin-orbit 

and Zeeman fields are special systems that allow 

for the study of exciting new phases of matter, 

such as topological superfluids, with a high 

degree of accuracy. 

• Topological quantum phase transitions emerge as 

function of Zeeman fields and binding energy for 

fixed spin-orbit coupling.
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Conclusions in words

• The critical temperature of the BKT transition as a function of 
pair binding energy is affected by the presence of spin-orbit 
effects and Zeeman fields. While the Zeeman field tends to 
reduce the critical temperature, SOC tends to stabilize it by 
introducing a triplet component in the superfluid order 
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superfluid state is anisotropic and becomes a sensitive probe 
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Conclusions in Pictures

Change in topology
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THE END
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